Institut für Numerische und Angewandte Mathematik - Arbeitsgruppe Optimierung

Veröffentlichungen von Anita Schöbel





Bücher




  • M.-C. Körner, A. Schöbel. 2010. Gene, Graphen, Organismen - Modellierungs- und Analysemethoden in der Systembiologie. Shaker.
  • A. Schöbel, D. Scholz. 2010. Evolution und Epidemie -- Spieltheorie in der Biophysik. Shaker.
  • M.-C. Körner, J. Geldermann, A. Schöbel. 2010. Erträge, Diagramme und Algorithmen - Operations Research in der Praxis. Shaker.
  • M. Krüsemann, M. Schachtebeck, A. Schöbel. 2010. Bahn, Bus, PKW -- Optimierung in der Verkehrsplanung. Shaker.
  • F. Geraets, L. Kroon, A. Schöbel, D. Wagner, C. Zaroliagis. 2007. Algorithmic Methods for Railway Optimization4359: Springer.
  • A. Schöbel. 2006. Optimization in public transportation. Stop location, delay management and tariff planning from a customer-oriented point of view. Springer.
  • A. Schöbel. 1999. Locating Lines and Hyperplanes -- Theory and Algorithms. Kluwer.
  • H.W. Hamacher, A. Schöbel. 1997. Public Transportation and Waste Management in a municipial context (in German). Shaker Verlag, Aachen.



Referierte Artikel in Zeitschriften




  • S. Behrends, R. Hübner, A. Schöbel. 2017. Norm Bounds and Underestimators for Unconstrained Polynomial Integer Minimization. Mathematical Methods of Operations Research. Accepted for publication.
  • P. Gattermann, J. Harbering, A. Schöbel. 2017. Line Pool Generation. Public Transport 9(1-2): 7-32.
  • M.C. L\'opez-de-los-Mozos, J. A. Mesa, A. Schöbel. 2017. A general approach for the location of transfer points on a network with a trip covering criterion and mixed distances. European Journal of Operational Research 260(1): 108-121.
  • M. Schmidt, L. Kroon, A. Schöbel, P. Bouman. 2017. The Traveler's Route Choice Problem under Uncertainty: Dominance Relations between Strategies. Operations Research 65(1): 184-199.
  • K. Klamroth, E. Köbis, A. Schöbel, C. Tammer. 2017. A unified approach to uncertain optimization. European Journal of Operational Research 260(2): 403-420.
  • J. Manitz, J. Harbering, M. Schmidt, T. Kneib, A. Schöbel. 2017. Source Estimation for Propagation Processes on Complex Networks with an Application to Delays in Public Transportation Systems. Journal of the Royal Statistical Society: Series C 66: 521-536.
  • G. Eichfelder, C. Krüger, A. Schöbel. 2017. Decision uncertainty in multiobjective optimization. Journal of Global Optimization. 1-26. online first.
  • E. Carrizosa, M. Goerigk, A. Schöbel. 2017. A biobjective approach to recovery robustness based on location planning. European Journal of Operational Research 261: 421-435.
  • A. Schöbel. 2017. An Eigenmodel for Iterative Line Planning, Timetabling and Vehicle Scheduling in Public Transportation. Transportation Research C 74: 348-365.
  • M. Goerigk, A. Schöbel. 2016. Algorithm Engineering in Robust Optimization. In Algorithm Engineering: Selected Results and Surveys9220: 245-279.
  • K. Kuhn, A. Raith, M. Schmidt, A. Schöbel. 2016. Bicriteria robust optimization. European Journal of Operational Research 252: 418-431.
  • J. Ide, A. Schöbel. 2016. Robustness for uncertain multi-objective optimization: A survey and analysis of different concepts. OR Spectrum 38(1): 235-271.
  • J. Geldermann, L. Kolbe, A. Schöbel, M. Schumann. 2016. Ressourceneffizienz in Unternehmensnetzwerken – Methoden zur betrieblichen und überbetrieblichen Planung für die Nutzung erneuerbarer Rohstoffe. In Nachhaltiges Entscheiden. Springer. Festschrift zum 65. Geburtstag von Prof. H. Dyckhoff.
  • E. Carrizosa, J. Harbering, A. Schöbel. 2016. Minimizing the passengers' traveling time in the stop location problem. Journal of the Operational Research Society 67(10): 1325-1337.
  • T. Dollevoet, D. Huisman, L. Kroon, M. Schmidt, A. Schöbel. 2015. Delay Management including capacities of stations. Transportation Science 49(2): 185-203.
  • M. Schmidt, A. Schöbel. 2015. Timetabling with Passenger Routing. OR Spectrum 37: 75-97.
  • M. Schmidt, A. Schöbel. 2015. The complexity of integrating routing decisions in public transportation models. Networks 65(3): 228-243.
  • M. Goerigk, M. Gupta, J. Ide, A. Schöbel, S. Sen. 2015. The Robust Knapsack Problem with Queries. Computers and Operations Research 55: 12-22.
  • J. Brimberg, R. Schieweck, A. Schöbel. 2015. Locating a median line with partial coverage distance. Journal of Global Optimization 62(2): Springer. 371-389.
  • J. Brimberg, H. Juel, M.-C. Körner, A. Schöbel. 2015. On Models for Continuous Facility Location with Partial Coverage. Journal of the Operational Research Society 66(1): 33-43.
  • H. Flier, M. Mihalak, P. Widmayer, A. Zych, Y. Kobayashi, A. Schöbel. 2015. Selecting vertex disjoint paths in plane graphs. Networks 66(2): 136-144.
  • C. Buchheim, R. Hübner, A. Schöbel. 2015. Ellipsoid bounds for convex quadratic integer programming. SIAM journal on optimization 25(2): 741-769.
  • A. Schöbel. 2015. Location of Dimensional Facilities in a Continuous Space. In Location Science. Springer. 63-103.
  • R. Hübner, A. Schöbel. 2014. When is rounding allowed in integer nonlinear optimization?. European Journal of Operational Research 237: 404-410.
  • R. Bauer, A. Schöbel. 2014. Rules of Thumb -- Practical online strategies for delay management. Public Transport 6(1): 85-105.
  • M.-C. Körner, J.A. Mesa, F. Perea, A. Schöbel, D. Scholz. 2014. A Maximum Trip Covering Location Problem with an Alternative Mode of Transportation on Tree Networks and Segments. TOP 22(1): 227-253.
  • M. Schmidt, A. Schöbel. 2014. Location of speed-up networks. Annals of Operations Research 223(1): 379-401.
  • M. Goerigk, M. Knoth, M. Müller-Hannemann, M. Schmidt, A. Schöbel. 2014. The Price of Strict and Light Robustness in Timetable Information. Transportation Science 48: 225-242.
  • M. Goerigk, A. Schöbel. 2014. Recovery-to-Optimality: A new two-stage approach to robustness with an application to aperiodic timetabling. Computers and Operations Research 52: 1-15.
  • M. Ehrgott, J. Ide, A. Schöbel. 2014. Minmax Robustness for Multi-objective Optimization Problems. European Journal of Operational Research 239: 17-31.
  • J. Ide, E. Köbis, D. Kuroiwa, A. Schöbel, C. Tammer. 2014. The relationship between multi-objective robustness concepts and set valued optimization. Fixed Point Theory and Applications 2014(83):
  • J. Brimberg, H. Juel, M.-C. Körner, A. Schöbel. 2014. Locating an axis-parallel rectangle on a Manhattan plane. TOP 22(1): 185-207.
  • F. Bruns, M. Goerigk, S. Knust, A. Schöbel. 2014. Robust load planning of trains in intermodal transportation. OR Spectrum 36: 631-668.
  • A. Schöbel. 2014. Generalized light robustness and the trade-off between robustness and nominal quality. MMOR 80(2): 161-191.
  • A. Schöbel, D. Scholz. 2014. A solution algorithm for non-convex mixed integer optimization problems with only few continuous variables. European Journal of Operational Research 232(2): 266-275.
  • V. Blomer, A. Schöbel. 2013. Twins of powerful numbers. Functiones et Approximatio Commentarii Mathematici 49(2): 349-356.
  • M. Goerigk, M. Schachtebeck, A. Schöbel. 2013. Evaluating Line Concepts using Travel Times and Robustness: Simulations with the \sf Lintim toolbox. Public Transport 5(3):
  • M. Goerigk, A. Schöbel. 2013. Improving the Modulo Simplex Algorithm for Large-Scale Periodic Timetabling. Computers and Operations Research 40(5): 1363-1370.
  • K. Klamroth, E. Köbis, A. Schöbel, C. Tammer. 2013. A unified approach for different concepts of robustness and stochastic programming via nonlinear scalarizing functionals. Optimization 62(5): 649-671.
  • A. Schöbel, S. Schwarze. 2013. Finding Delay-Resistant Line Concepts using a Game-Theoretic Approach. Netnomics 14(3): 95-117.
  • T. Dollevoet, D. Huisman, M. Schmidt, A. Schöbel. 2012. Delay Management with Rerouting of Passengers. Transportation Science 46(1): 74-89.
  • S. Cicerone, G. Di Stefano, M. Schachtebeck, A. Schöbel. 2012. Multi-Stage Recovery Robustness for Optimization Problems: A new Concept for Planning under Disturbances. Information Sciences 190: 107-126.
  • M.-C. Körner, H. Martini, A. Schöbel. 2012. Minisum Hyperspheres in Normed Spaces. Discrete Applied Mathematics 16(15): 2221-2233.
  • A. Schöbel. 2012. Line planning in public transportation: models and methods. OR Spectrum 34(3): 491-510.
  • R. Blanquero, E. Carrizosa, A. Schöbel, D. Scholz. 2011. Location of a line in the three-dimensional space. EJOR 215: 14-20.
  • M.-C. Körner, J. Brimberg, H. Juel, A. Schöbel. 2011. Geometric fit of a point set by generalized circles. Journal of Global Optimization 51(1): 115-132.
  • M. Ehrgott, L. Shao, A. Schöbel. 2011. An Approximation Algorithm for Convex Multi-objective Programming Problems. Journal of Global Optimization. 397-516.
  • J. Geldermann, A. Schöbel. 2011. On the similarities of some Multi-Ciriteria Decision Analysis Methods. Multi-criteria decision analysis 18(3-4): 219-230.
  • J. Brimberg, H. Juel, M.-C. Körner, A. Schöbel. 2011. Locating a general minisum `circle' on the plane. 4OR 9(4): 351-370.
  • M.-C. Körner, A. Schöbel. 2010. Weber problems with highway distances. TOP 18(1): 223-241.
  • M. Schachtebeck, A. Schöbel. 2010. To wait or not to wait and who goes first? Delay Management with Priority Decisions. Transportation Science 44(3): 307-321.
  • D. Scholz, A. Schöbel. 2010. The theoretical and empirical rate of convergence for geometric branch-and-bound methods. Journal of Global Optimization 48(3): 473-495.
  • C. Liebchen, M. Schachtebeck, A. Schöbel, S. Stiller, A. Prigge. 2010. Computing delay-resistant railway timetables. Computers and Operations Research 37: 857-868.
  • A. Schöbel, D. Scholz. 2010. The Big Cube Small Cube solution method for multidimensional facility location problems. Computers and Operations Research 37: 115-122.
  • S. Cicerone, G. D'Angelo, G. Di Stefano, D. Frigioni, A. Navarra, M. Schachtebeck, A. Schöbel. 2009. Recoverable robustness in shunting and timetabling. In Robust and online large-scale optimization5868: Springer. 28-60.
  • M. Michaelis, A. Schöbel. 2009. Integrating Line Planning, Timetabling, and Vehicle Scheduling: A customer-oriented approach. Public Transport 1(3): 211-232.
  • J. Brimberg, H. Juel, A. Schöbel. 2009. Locating a minisum circle in the plane. Discrete Applied Mathematics 157: 901-912.
  • J. Brimberg, H. Juel, A. Schöbel. 2009. Locating a circle on the plane using the minimax criterion. Studies in Locational Analysis 17: 46-60.
  • D. Poetranto, H.W. Hamacher, S. Horn, A. Schöbel. 2009. Stop Location Design in Public Transportation Networks: Covering and Accessibility Objectives. TOP 17(2): 335-346.
  • A. Schöbel. 2009. Capacity constraints in delay management. Public Transport 1(2): 135-154.
  • A. Schöbel, H.W. Hamacher, A. Liebers, D. Wagner. 2009. The continuous stop location problem in public transportation. Asia-Pacific Journal of Operational Research 26(1): 13-30.
  • A. Schöbel, A. Kratz. 2009. A bicriteria approach for robust timetabling. In Robust and online large-scale optimization5868: Springer. 119-144.
  • J. Puerto, A. Schöbel, S. Schwarze. 2008. The path player game: A network game from the point of view of the network providers. Mathematical Methods of Operations Research 68(1): 1-20.
  • J. Brimberg, H. Juel, A. Schöbel. 2007. Locating a circle on a sphere. Operations Research 55(4): 782-791.
  • A. Schöbel. 2007. Integer Programming approaches for solving the delay management problem. In Algorithmic Methods for Railway Optimization. Springer. 145-170.
  • A. Ginkel, A. Schöbel. 2007. To wait or not to wait? The bicriteria delay management problem in public transportation. Transportation Science 41(4): 527-538.
  • N. Bissantz, S. Güttler, J. Jacobs, S. Kuy, T. Schaer, A. Schöbel, S. Scholl. 2005. DisKon - Laborversion eines flexiblen, modularen und automatischen Dispositionsassistenzsystems. Eisenbahntechnische Rundschau (ETR) 45(12): 809-821. (in German).
  • A. Schöbel. 2005. Locating stops along bus or railway lines -- a bicriteria problem. Annals of Operations Research 136: 211-227.
  • N. Ruf, A. Schöbel. 2004. Set covering problems with almost consecutive ones property. Discrete Optimization 1(2): 215-228.
  • J. M. Díaz-Bánez, J.A. Mesa, A. Schöbel. 2004. Continuous Location of Dimensional Structures. European Journal of Operational Research 152: 22-44.
  • H.W. Hamacher, A. Schöbel. 2004. Design of Zone Tariff Systems in Public Transportation. OR 52(6): 897-908.
  • L. Foulds, H.W. Hamacher, A. Schöbel, T. Yamaguchi. 2003. On center cycles in grid graphs. Annals of Operations Research 122: 163-175.
  • J. Brimberg, H. Juel, A. Schöbel. 2003. Properties of 3-dimensional line location models. Annals of Operations Research 122: 71-85.
  • A. Schöbel. 2003. Anchored hyperplane location problems. Discrete & Computational Geometry 29(2): 229-238.
  • Z. Drezner, K. Klamroth, A. Schöbel, G. Wesolowsky. 2002. The Weber Problem. In Facility Location - Applications and Theory. Springer. 1-36.
  • J. Brimberg, H. Juel, A. Schöbel. 2002. Linear Facility Location in Three Dimensions - Models and Solution Methods. Operations Research 50(6): 1050-1057.
  • H.W. Hamacher, A. Liebers, A. Schöbel, D. Wagner, F. Wagner. 2001. Locating new stops in a railway network. Electronic Notes in Theoretical Computer Science 50(1):
  • H. Martini, A. Schöbel. 2001. Median and Center hyperplanes in Minkowski spaces -- a unifying approach. Discrete Mathematics 241: 407-426.
  • A. Schöbel. 2001. A Model for the Delay Management Problem based on Mixed-Integer Programming. Electronic Notes in Theoretical Computer Science 50(1):
  • S. Nickel, A. Schöbel, T. Sonneborn. 2000. Hub Location Problems in Urban Traffic Networks. In Mathematical Methods and Optimization in Transportation Systems. KLUWER academic publishers. 95-107.
  • S. Nickel, A. Schöbel. 1999. A geometric approach to global optimization. Journal of Global Optimization 15: 109-126.
  • H. Martini, A. Schöbel. 1999. Hyperplane transversals of homothetical, centrally symmetric polytopes. Periodica Mathematica Hungaria 39: 73-81.
  • H. Martini, A. Schöbel. 1999. A characterization of smooth norms. Geometriae Dedicata 77: 173-183.
  • A. Schöbel. 1999. Solving restricted line location problems via a dual interpretation. Discrete Applied Mathematics 93: 109-125.
  • H. Martini, A. Schöbel. 1998. Median hyperplanes in normed spaces -- a survey. Discrete Applied Mathematics 89: 181-195.
  • A. Schöbel. 1998. Locating least distant lines in the plane. European Journal of Operational Research 106(1): 152-159.
  • M. Ehrgott, H.W. Hamacher, K. Klamroth, S. Nickel, A. Schöbel, M.M. Wiecek. 1997. A Note on the Equivalence of Balance Points and Pareto Solutions in Multiple-Objective Programming. JOTA 92(1): 209-212.
  • H.W. Hamacher, A. Schöbel. 1997. A Note on Center Problems with forbidden Polyhedra. ORL 20: 165-169.
  • A. Schöbel. 1997. Locating line segments with vertical distances. Studies in Locational Analysis 11: 143-158.
  • A. Schöbel. 1996. Zone Planning in Public Transportation. In Advanced Methods in Transportation Analysis. Springer Verlag. 117-134.
  • A. Schöbel. 1996. Locating least-distant lines with block norms. Studies in Locational Analysis 10: 139-150.
  • H.W. Hamacher, A. Schöbel. 1995. On fair zone design in public transportation. In Computer-Aided Transit Scheduling. Springer. 8-22.



Referierte Konferenzbeiträge




  • M. Friedrich, M. Müller-Hannemann, R. Rückert, A. Schiewe, A. Schöbel. 2017. Robustness Tests for Public Transport Planning. In 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)59: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 1-16.
  • M. Friedrich, M. Hartl, A. Schiewe, A. Schöbel. 2017. Integrating Passengers' Assignment in Cost-Optimal Line Planning. In 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)59: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 1-16.
  • M. Friedrich, M. Hartl, A. Schiewe, A. Schöbel. 2017. Angebotsplanung im öffentlichen Verkehr - planerische und algorithmische Lösungen. In Heureka'17.
  • J. Pätzold, A. Schiewe, P. Schiewe, A. Schöbel. 2017. Look-Ahead Approaches for Integrated Planning in Public Transportation. In 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)59: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 1-16.
  • P. Gattermann, P. Großmann, K. Nachtigall, A. Schöbel. 2016. Integrating Passengers' Routes in Periodic Timetabling: A SAT approach. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)54: Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 1-15.
  • P. Gattermann, A. Schiewe, A. Schöbel. 2016. An Iterative Approach for Integrated Planning in Public Transportation. In 9th Triennial Symposium on Transportation Analysis.
  • J. Pätzold, A. Schöbel. 2016. A Matching Approach for Periodic Timetabling. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)54: Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 1-15.
  • A. Schiewe, A. Schöbel. 2016. A Matching Approach for Line Planning. In 9th Triennial Symposium on Transportation Analysis.
  • M. Tiedemann, J. Ide, A. Schöbel. 2015. Competitive Analysis for Multi-Objective Online Algorithms. In Proceedings of the 9th International Workshop on Algorithms and Computation WALCOM 2015. LNCS 8973, Springer. 210-221.
  • M. Goerigk, Y. Sabharwal, A. Schöbel, S. Sen. 2014. Approximation Algorithms for the Weight-Reducible Knapsack Problem. In Proceedings of TAMC.
  • P. Bouman, M. Schmidt, L. Kroon, A. Schöbel. 2013. Passenger Route Choice in Case of Disruptions. In Proceedings of the 16th International IEEE Conference on Intelligent Transport Systems (IEEE-ITSC). http://www.computr.eu/wp-content/uploads/2013/10/IEEE-ITS2013-PassengerChoice.pdf.
  • M. Goerigk, S. Heße, M. Müller-Hannemann, M. Schmidt, A. Schöbel. 2013. Recoverable Robust Timetable Information. In 13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems33: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 1-14.
  • E. Carrizosa, J. Harbering, A. Schöbel. 2013. The Stop Location Problem with Realistic Traveling Time. In 13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems33: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 80-93.
  • T. Dollevoet, M. Schmidt, A. Schöbel. 2011. Delay Management including Capacities of Stations. In 11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems20: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 88-99.
  • M. Goerigk, M. Knoth, M. Müller-Hannemann, M. Schmidt, A. Schöbel. 2011. The Price of Robustness in Timetable Information. In 11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems20: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 76-87.
  • M. Goerigk, A. Schöbel. 2011. Engineering the Modulo Network Simplex Heuristic for the Periodic Timetabling Problem. In Proceedings of the 10th International Symposium on Experimental Algorithms (SEA)6630: Springer. 181-192.
  • M. Goerigk, A. Schöbel. 2011. A Scenario-Based Approach for Robust Linear Optimization. In Proceedings of the 1st International ICST Conference on Practice and Theory of Algorithms in (Computer) Systems (TAPAS). Springer. 139-150.
  • M. Schmidt, A. Schöbel. 2010. The Complexity of Integrating Routing Decisions in Public Transportation Models. In Proceedings of ATMOS1014: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 156-169.
  • M. Goerigk, A. Schöbel. 2010. An Empirical Analysis of Robustness Concepts for Timetabling. In Proceedings of ATMOS1014: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 100-113.
  • H. Flier, M. Mihalák, A. Schöbel, P. Widmayer, A. Zych. 2010. Vertex Disjoint Paths for Dispatching in Railways. In Proceedings of ATMOS1014: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 61-73.
  • T. Dollevoet, M. Schmidt, A. Schöbel. 2009. Delay Management with Re-Routing of Passengers. In ATMOS 2009.
  • M.-C. Körner, J. Brimberg, H. Juel, A. Schöbel. 2009. General circle location. In Proceedings of the 21st Canadian Conference on Computational Geometry (CCCG2009). 111-114.
  • S. Cicerone, G. Di Stefano, M. Schachtebeck, A. Schöbel. 2008. Dynamic Algorithms for Recoverable Robustness Problems. In ATMOS 2008 - 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems.
  • M. Schachtebeck, A. Schöbel. 2008. IP-based Techniques for Delay Management with Priority Decisions. In ATMOS 2008 - 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems.
  • C. Conte, A. Schöbel. 2007. Identifying dependencies among delays. In proceedings of IAROR 2007. ISBN 978-90-78271-02-4.
  • S. Mecke, A. Schöbel, D. Wagner. 2006. Stop location - complexity and approximation issues. In 5th workshop on algorithmic methods and models for optimization of railways.
  • A. Schöbel, S. Schwarze. 2006. Dominance and equilibria in the path player game. In Proceedings of OR 2005, Bremen. Springer. 489-494.
  • A. Schöbel, S. Schwarze. 2006. A game-theoretic approach to Line Planning. In 6th workshop on algorithmic methods and models for optimization of railways.
  • A. Schöbel, S. Scholl. 2006. Line Planning with Minimal Travel Time. In 5th Workshop on Algorithmic Methods and Models for Optimization of Railways.
  • R. Velasquez, M. Ehrgott, D. Ryan, A. Schöbel. 2005. A set-packing aproach to routing trains through railway stations. In 40th Annual Conference of the Operations Research Society of New Zealand. 305-314.
  • M. Gatto, R. Jacob, L. Peeters, A. Schöbel. 2005. The Computational Complexity of Delay Management. In Graph-Theoretic Concepts in Computer Science: 31st International Workshop (WG 2005)3787:
  • M. Schröder, A. Schöbel. 2003. AnSiM -- GIS-gestützte Optimierung von Anschlusssicherungsmaßnahmen. In Angewandte geographische Informationsverarbeitung XV. Wichmann Verlag. 465-473.
  • A. Schöbel, M. Schröder. 2003. Covering population areas by railway stops. In Proceedings of OR 2002, Klagenfurt. Springer. 187-192.
  • A. Schöbel. 1994. Fair Zone Design in Public Transportation Networks. In Operations Research Proceedings 1994. Springer Verlag. 191-196.



Eingereichte Arbeiten




  • J. Pätzold, A. Schöbel. 2017. Solving Robust Optimization Problems by Iterative Approaches. submitted.
  • A. Raith, M. Schmidt, A. Schöbel, L. Thom. 2017. Multi-objective minmax robust combinatorial optimization with cardinality-constrained uncertainty. Arxiv. https://arxiv.org/abs/1701.06317v1.
  • A. Raith, M. Schmidt, A. Schöbel, L. Thom. 2017. Extensions of Labeling Algorithms for Multi-objective Uncertain Shortest Path Problems. Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Georg-August Universität Göttingen.
  • M. Botte, A. Schöbel. 2016. Dominance for Multi-Objective Robust Optimization Concepts. Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Georg-August Universität Göttingen.
  • J. Harbering, F. Kirchhoff, M. Kolonko, A. Schöbel. 2014. Delay Propagation in Public Transport. Working Paper.



Diese Veröffentlichungen als einzelne BibTeX-Datei: publications.bib